
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 4: Thread Coarsening
and more on Tiling/Blocking

1

Thread Coarsening

• Parallel execution sometime requires doing
redundant memory accesses and/or calculations
– Merging multiple threads into one allows re-use of

result, avoiding redundant work

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Unique
Redundant

4-way
parallel

2-way
parallel

Time

2

Outline of Technique

• Merge multiple threads so each resulting thread
calculates multiple output elements
– Perform the redundant work once and save result into

registers
– Use register result for calculating all output elements

• Merged kernel code will use more registers
– May reduce the number of threads allowed on an SM
– Increased efficiency may outweigh reduced

parallelism, especially if ample for given hardware

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

3

Register Tiling

• Registers
– extremely fast (short latency)
– do not require memory access instructions (high

throughput)
– But – private to each thread
– Threads cannot share computation results or loaded

memory data through registers

• With thread coarsening
– The computation from merged threads can now share

registers
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

4

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

• Add each atom’s contribution to several lattice
points at a time, where distances only differ in
one (x) component:
potentialA += charge[i] / (distanceA to atom[i])
potentialB += charge[i] / (distanceB to atom[i])
…

DCS Kernel with Register Tiling

Atom[i]

Distances to
Atom[i]

5

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

DCS Coarsened Kernel Structure

• Example kernel processes up to 4 lattice points
at a time in the inner loop

• Subsequent lattice points computed by each
thread are offset by a half-warp to guarantee
coalesced memory accesses

• Loads and increments 4 potential map lattice
points from global memory at completion of the
summation, mitigating register consumption

6

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Coarsened Kernel Inner Loop
Outline

for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));
energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));
energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq));
energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));

}
…

7

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

More Comments on Coarsened Kernel

• Pros:
– We can reduce the number of loads by reusing atom coordinate

values for multiple voxels, by storing in regs
– By merging multiple points into each thread, we can compute

dy^2+dz^2 once and use it multiple times, much like the fast CPU
version of the code

– A good balance between efficiency, locality and parallelism

• Cons:
– Uses more registers, one of several limited resources
– Increases effective tile size, or decreases thread count in a block,

though not a problem at this level

8

Presenter
Presentation Notes
Although const memory is very fast, loading values into registers costs instruction slots

Basic DCS Kernel

• Each thread calculates value for one grid point
• A small toy example. ASSUME

– Each thread block consists of 8 threads
– Each warp consists of 4 threads, 16-byte coalescing
– a 10X5 potential grid map
– Padding - 2 points in x dim and 1 point in y dim

• No boundary tests
• Coalescing

– 44% overhead

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

9

DCS Memory Coalescing

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Row 1 Row 2

Coalescing units

Row 1

No padding

Padding

Thread Blocks Grid Points

10

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Coarsened DCS Kernel

• Merge threads to calculate more than one lattice
point per thread, resulting in larger computational
tiles:
– Thread count per block may need to be be decreased

to reduce computational tile size as per thread work is
increased

– Otherwise, tile size gets bigger as threads do more
than one lattice point evaluation, resulting on a
significant increase in padding and wasted
computations at edges

11

Simple Thread Coarsening

• Each thread processes two grid points
– Increased padding overhead (92%)
– Classic quantization effect

• Can be mitigated by reducing the number of
threads in each block, X-dim in particular

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

12

A Simple Quiz

• Assume
– 1000X1000 energy grid
– 16X16 thread block
– 64-byte coalesing units

• What is the padding overhead if each thread
processes one grid point?

• What is the padding overhead if each thread
processes four grid points?

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

13

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

DCS CUDA Block/Grid Decomposition
(Coarsened, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Coarsening increases
computational tile size

Threads compute
up to 8 potentials,

skipping by half-warps

14

STENCIL CODE EXAMPLE
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

15

Stencil Computation

• Describes the class of nearest neighbor
computations on structured grids.

• Each point in the grid is a weighted linear
combination of a subset of neighboring values.

• Optimizations and concepts covered : Improving
locality and Data Reuse
– 2D Tiling in Shared Memory
– Coarsening and Register Tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

16

Stencil Computation

• High parallelism: Conceptually, all points in the
grid can be updated in parallel.

• Each computation performs a global sweep
through the data structure.

• Low computational intensity: High memory traffic
for very few computations.

• Base case: one thread calculates one point
• Challenge: Exploit parallelism without overusing

memory bandwidth

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

17

Memory Access Details

• General Equation:

• Separate read and write arrays.
• Mapping of arrays from 3D space to linear array

space.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

18

Coarsened implementation

• Each thread calculates a one-element thin
column along the z-dimension
– Each block computes a rectangular column along the

z-dimension
• Each thread loads its input elements from global

memory, independently of other threads
– High read redundancy, heavy global memory traffic

• Optimization – each thread can reuse data along
the z-dimension
– The current center input becomes the bottom input
– The current top input becomes the center input

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

19

Coarsened Kernel in Z-dimension

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

20

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

float bottom = AO[Index3D(nx, ny, i, j, 0)];
float current = AO[Index3D(nx, ny, i, j, 1)];
float top = AO[Index3D(nx, ny, i, j, 2)];

for (int k = 1; k < nz-1; k++) {
Anext[Index3D(nx, ny, i, j, k) = top + bottom +

AO[Index3D(nx, ny, i-1, j, k)] +
AO[Index3D(nx, ny, i+1, j, k)] +
AO[Index3D(nx, ny, i, j-1, k)] +
AO[Index3D(nx, ny, i, j+1, k)] +
6.0f * current/ (fac*fac);

bottom = current; current = top; top = AO[Index(nx, ny, i, j, k+2);
}

Loads in the Coarsened Kernel

• Assume no data reuse along the z-direction
within each thread,
– A thread loads 7 input elements for each output

element.
• With data reuse within each thread,

– A thread loads 5 input elements for each output

• All loads by neighboring threads are to
continuous addresses
– Coalecsed if alignment requirement is relaxed

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

21

Cross-Thread Data Reuse

• Each internal point is
used to calculate
seven output values
– self, 4 planar

neighbors, top and
bottom neighbors

• Surface, edge, and
corner points are used
for fewer output
values

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

22

Improving Locality: 2D Tiling

• Assume that all threads of a block march up the
z-direction in synchronized phases

• In each phase, all threads calculate a 2-D slide of
the rectangular output column

• For each phase, maintain three slices of relevant
input data in the on-chip memories
– One top and one bottom element in each thread’s

private registers
– All current elements also in shared memory

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

23

Improving Locality: 2D Tiling (cont.)

• From one phase to next, the kernel code
– Moves current element to register for lower element
– Moves top element from top register to current register

and shared memory
– Load new top element from Global Memory to register

• Need to deal with halo data
– Needed to calculate edge elements

of the column
– For each 3D nxmxp output block to

be computed, we need to load
(n+2)x(m+2)x(p+2) inputs..

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

24

Load x-Halo into Shared Memory

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

25

__shared__ float As[TILE_WIDTH+1][TILE_WIDTH+1];
__shared__ float As[TILE_WIDTH+1][TILE_WIDTH+1];

float bottom = A0[index3D(nx, ny, i, j, 0)];
float current = A0[index3D(nx, ny, i, j, 1)];
float top = A0[index3D(nx, ny, i, j, 2)];

int i_tile = threadIdx.x + 1;
int j_tile = threadIdx.y + 1;
for (int k = 1; k < nz-1; k++) {

As[i_tile][j_tile] = current;
if(threadIdx.x == 0)

As[i_tile - 1][j_tile] = A0[index3D(nx, ny, i-1, j, k)];
if(threadIdx.x == blockDim.x-1)

As[i_tile + 1][j_tile] = A0[index3D(nx, ny, i+1, j, k)];

Not coalesced

Load y-Halo into Shared Memory

if(threadIdx.y == 0)
As[i_tile][j_tile - 1] = A0[index3D(nx, ny, i, j-1, k)];

if(threadIdx.y == blockDim.y-1)
As[i_tile][j_tile + 1] = A0[index3D(nx, ny, i, j+1,k)];

__syncthreads();

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

26

coalesced

Anext[Index3D(nx, ny, i, j, k) = top + bottom +
As[i_tile-1][j_tile] + As[i_tile+1][j_tile] +
As[i_tile][j_tile-1] + As[i_tile][j_tile+1] +
6.0f * current/ (fac*fac);

bottom = current;
current = top;
top = AO[Index(nx, ny, i, j, k+1);
__syncthreads(); }

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

27

A Simpler Approach

• Have the TILE_WIDTH to be 2 more than the x
and y dimension of the thread block dimensions

• In kernel, have extra instruction to

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

28

Loading halo elements can hurt.

• For small n and m, the halo overhead can be
very significant
– If n=16 and m = 8, each slice calculates 16*8=128

output elements in each slice and needs to load
(16+2)*(8+2) =18*10=180 elements

– In coarsened code, each output element needs 5
loads from global memory, a total of 5*128=640 loads

– The total ratio of improvement is 640/180 = 3.5, rather
than 5 times

– The value of n and m are limited by the amount of
registers and shared memory in each SM

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

29

In Fermi

• It is often better not to load halo elements into
shared memory.

• Rather, just put in a test and load the halo to
from the global memory for the boundary
elements

• The loads of horizontal halos are coalesced
• The loads of vertical halos tend to be in L2 cache

(touched by neighbor trhead blocks)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

30

Accessing Halo from Global Memory

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

31

__shared__ float As[TILE_WIDTH][TILE_WIDTH];
__shared__ float As[TILE_WIDTH][TILE_WIDTH];
float bottom = AO[Index3D(nx, ny, i, j, 0)];
float current = AO[Index3D(nx, ny, i, j, 1)];
float top = AO[Index3D(nx, ny, i, j, 2)];
As[i][j] = current;
for (int k = 1; k < nz-1; k++) {

__syncthreads();
Anext[Index3D(nx, ny, i, j, k) = top + bottom +

(i==0 ? AO[Index3D(nx,ny,i-1,j,k) : As[i-1][j]) +
(i==TILE_SIZE-1)? AO[Index3D(nx,ny,i+1,j,k), As[i+1][j]) +
(j==0? AO[Index3D(nx,ny,i,j-1,k)]: As[i][j-1]) +
(j==TILE_SIZE-1)? AO[Index3D(nx,ny,i, j+1,k)] :As[i][j+1]+
6.0f * current/ (fac*fac);

bottom = current; current = top; top = AO[Index(nx, ny, i, j, k+1);
__syncthreads();
As[i][j] = current; }

More Thread Coarsening

• We can further coarsen threads along the y-
dimension.

• Merge multiple threads that go up the z-
dimension together.
– Have all current elements of all merged threads in

register – increased register pressure
– Access some of the neighbor elements from the

registers rather than shared memory

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

32

Coarsened Kernel in YZ-dimensions

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

33

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j1 = blockIdx.y * blockDim.y + 2*threadIdx.y;
int j2 = blockIdx.y * blockDim.y + 2*threadIdx.y+1;

float bottom1 = AO[Index3D(nx, ny, i, j1, 0)];
float bottom2 = AO[Index3D(nx, ny, I, j2, 0)];

float current1 = AO[Index3D(nx, ny, i, j1, 1)];
float current2 = AO[Index3D(nx, ny, I, j2, 1)];

float top1 = AO[Index3D(nx, ny, i, j1, 2)];
float top2 = AO[Index3D(nx, ny, i, j2, 2)];

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Coarsened Kernel in YZ Dimensions

for (int k = 1; k < nz-1; k++) {
Anext[Index3D(nx, ny, i, j1, k) = top1 + bottom1 +

AO[Index3D(nx, ny, i-1, j1, k)] + AO[Index3D(nx, ny, i+1, j1, k)] +

AO[Index3D(nx, ny, i, j1-1, k)] + current2 +
6.0f * current1/ (fac*fac);

Anext[Index3D(nx, ny, i, j2, k) = top2 + bottom2 +
AO[Index3D(nx, ny, i-1, j2, k)] + AO[Index3D(nx, ny, i+1, j2, k)] +

current1 + AO[Index3D(nx, ny, i, j2+1, k)] +
6.0f * current2/ (fac*fac);

bottom1 = current1; current1 = top1; top1 = AO[Index(nx, ny, i, j1, k+2);

bottom2 = current2; current2 = top2; top2 = AO[Index(nx, ny, i, j2, k+2);

}
34

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

35

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 4: Thread Coarsening and more on Tiling/Blocking
	Thread Coarsening
	Outline of Technique
	Register Tiling
	DCS Kernel with Register Tiling
	DCS Coarsened Kernel Structure
	Coarsened Kernel Inner Loop Outline
	More Comments on Coarsened Kernel
	Basic DCS Kernel
	DCS Memory Coalescing
	Coarsened DCS Kernel
	Simple Thread Coarsening
	A Simple Quiz
	DCS CUDA Block/Grid Decomposition � (Coarsened, coalesced)
	Stencil Code example
	Stencil Computation
	Stencil Computation
	Memory Access Details
	Coarsened implementation
	Coarsened Kernel in Z-dimension
	Loads in the Coarsened Kernel
	Cross-Thread Data Reuse
	Improving Locality: 2D Tiling
	Improving Locality: 2D Tiling (cont.)
	Load x-Halo into Shared Memory
	Load y-Halo into Shared Memory
	Slide Number 27
	A Simpler Approach
	Loading halo elements can hurt.
	In Fermi
	Accessing Halo from Global Memory
	More Thread Coarsening
	Coarsened Kernel in YZ-dimensions
	Coarsened Kernel in YZ Dimensions
	Any more Questions?

